
PÁDRAIC BRADY

PHP, Security, Testing, Zend Framework and other crazy stuff

« Mockery 0.7.2 Released (And On

Packagist.org!)

PHP: Innocent Villagefolk or a Pillagin’

Pirate? »

Tweet

(Photo credit: bertboerland)

A Hitchhiker’s Guide to

Cross-Site Scripting

(XSS) in PHP (Part 1):

How Not To Use

Htmlspecialchars() For

Output Escaping

In recent weeks,

I consulted with

the second most

intelligent

species on the

planet: Dolphins.

Dolphins are

renowned

across the

known Universe for their awesome programming skills. After

Mockery: The popular PHP

mock object framework

Humbug: A Mutation Testing

framework for PHP

phar-updater: Easy and

secure self-update for PHARs

humbug_get_contents: An

alternative to

file_get_contents()

preconfigured for TLS

protection on remote HTTPS

requests

For Zend Framework:

Zend\Feed: RSS/Atom Feed

reader, writer and

Pubsubhubbub support

Zend\Escaper: Escape HTML

output for any context

MY OPEN SOURCE

MY OPEN SOURCE

PROJECTS

PROJECTS

RECENT POSTS

RECENT POSTS

Self-Updating PHARs:

Home

http://blog.astrumfutura.com:80/2012/03/a-hitchhikers-guide-to-cross-site-scripting-xss-in-pGo

OCT NOV APR

04

2014 2015

2016

107 captures

👤 ⍰❎
f 🐦

14 Mar 2012 - 10 Apr 2016 ▾ About this capture

A Hitchhiker’s Guide to Cross-Site Scripting (XSS... https://web.archive.org/web/20151104064503/htt...

1 van 25 21-09-18 11:43

all, it was they who developed such insightful works as

“Evolution By Example”, “Dude! We Wrote The Laws Of

Physics!”, and “How Many Humans Does It Take To Screw

Up A Planet?”. The answer to the last will be published on

01/01/2013 after the experiment is shut down and sent to a

landfill site assuming the Supreme Spaghetti Monster signs

off on the permit.

Dolphins think we are really dumb and theorise that this level

of stupidity has one obvious cause: self-imposed ignorance.

We are, after all, only the third most intelligent species on

Earth and appear to have aspirations to lower our IQ just a bit

more.

While it’s no harm poking fun at ourselves, in PHP we do

have a serious problem. Cross-Site Scripting (XSS) remains

one of the most significant classes of security problems

afflicting PHP applications. Despite years of education,

community awareness and the development of frameworks

which can offer a huge boost in consistent practices – things

are not getting any better.

So, I finally figured out what the core problem is: PHP

programmers are completely clueless about XSS. It’s that

simple. Instead of going out and studying the topic, we blindly

follow some preferred herd of people offering advice with

heartfelt conviction despite the fact that they are probably just

as ignorant as the rest of us. Does that sound like the

behaviour of something which allegedly evolved into an

intelligent species? The result is a mix of ignorance and

stagnant knowledge that leaves PHP in an unenviable

position beset by wrongheaded zealots.

To get the ball rolling, this two-part article series is a tour of

how NOT to use the htmlspecialchars() function that is

typically pressed ganged into service as PHP’s universal

output escaper. By offering an example based guide, I hope

it will illustrate just how many ways a prospective attacker

Stable phar-updater

packages now available

(11)

I recently released the first

stable versions of my

phar-updater package. So

there. Announced. Can I

go back to playing Witcher

3 now? […]

5 MONTHS AGO

PHP’s “Magic Hash”

Vulnerability (Or Beware

Of Type Juggling) (6)

A while back, I noticed a

flurry of activity around a

somewhat obvious

outcome of PHP’s type

juggling antics. As the

snowball gathered pace

[…]

5 MONTHS AGO

TLS/SSL Security In PHP:

Avoiding The Lowest

Common Insecure

Denominator Trap (1)

A few weeks back I wrote

a piece about updating

PHARs in-situ, what we’ve

taken to calling “self-

updating”. In that article, I

touched on […]

6 MONTHS AGO

Introduction to Humbug: A

Mutation Testing

Framework for PHP (5)

On 1 January 2015, I first

pushed Humbug onto

Github and three months

later it is reaching a state

where I can prep for the

release of […]

6 MONTHS AGO

Go

OCT NOV APR

04

2014 2015

2016

107 captures

👤 ⍰❎
f 🐦

14 Mar 2012 - 10 Apr 2016 ▾ About this capture

A Hitchhiker’s Guide to Cross-Site Scripting (XSS... https://web.archive.org/web/20151104064503/htt...

2 van 25 21-09-18 11:43

using XSS can exploit this function’s misuse to pull off a

successful attack. The examples were written for PHP 5.3, so

5.4 users may need to imagine they still have 5.3 installed

and/or lodge an official complaint with somebody who looks

like they keep a complaints box handy (your local fast food

restaurant is a good start).

This example led approach has another motive. Simple

examples can be translated into unit tests. Ideally, many of

the current crop of frameworks can use this article as a guide

to what their unit tests should be looking for. This also makes

it far easier for everyday programmers to consume the article

and run around the place, drunk with ungodly power,

identifying issues in the libraries, frameworks and other

projects that they rely on.

To help us on the path of enlightenment before it’s too late

(I’d lodge an appeal with the Supreme Spaghetti Monster but

apparently the Mayans already tried and failed), I also invite

other PHP programmers to blog about a security topic over

the next month or two. Give programmers one last chance to

get it right before the Planet is demolished by the Vogon

destructor fleet. Just pick a topic that drives you up the walls

in defiance of gravity and spend an hour writing something

useful and (optionally) expletive filled. Every little bit helps.

What Is

Htmlspecialchars()?

According to many programmers from Earth,

htmlspecialchars() is a function used to escape output to

prevent XSS. This is however a completely wrong definition.

The function was actually co-opted by programmers to

combat XSS because it was either that or create slow

userland functions for which the internals developers might

get around to creating, when the full moon coincided with the

right planetary alignment in another 314 years, a speedier C

alternative to. The actual definition (along with a half-hearted

S H O W M O R E

My Tweets

FOLLOW ME ON

FOLLOW ME ON

TWITTER

TWITTER

Securely Distributing

PHARs: Pitfalls and

Solutions (8)

The PHAR ecosystem has

become a separate

distribution mechanism for

PHP code, distinct from

what we usually consider

PHP packages via […]

8 MONTHS AGO

Go

OCT NOV APR

04

2014 2015

2016

107 captures

👤 ⍰❎
f 🐦

14 Mar 2012 - 10 Apr 2016 ▾ About this capture

A Hitchhiker’s Guide to Cross-Site Scripting (XSS... https://web.archive.org/web/20151104064503/htt...

3 van 25 21-09-18 11:43

self-doubting nod to preventing XSS) is as follows:

“

Certain characters have special significance in HTML,

and should be represented by HTML entities if they

are to preserve their meanings. This function returns a

string with some of these conversions made; the

translations made are those most useful for everyday

web programming. If you require all HTML character

entities to be translated, use htmlentities() instead.

This function is useful in preventing user-supplied text

from containing HTML markup, such as in a message

board or guest book application.

Note that this hints at, but does not explicitly use, the terms

Cross-Site Scripting, XSS or even Security. Then again, it

does refer to guest book applications so it was probably

written in 1790 by the Dolphin who created PHP v86 and who

then got around to backporting version 1.0 for Humans in the

late 20th Century out of extreme pity for our reliance on CGI.

No, not the let’s take an action movie and turn it into a

plotless eyesore with computer generated fake stuff style CGI

– though memories of both are comparably bad.

Does this make htmlspecialchars() terrible at preventing

XSS? No. As part of a comprehensive well-understood

strategy to prevent XSS, the function is very useful. However,

in PHP it is frequently overused, misused, abused, confused

and…. Darn it, ran out of rhyming words again. Suffice it to

say that a good description of htmlspecialchars() is that it’s

an unsuitable tool for preventing XSS that has slowly evolved

into a better suited tool over the years. I keep telling myself

that, at least.

The function, htmlspecialchars(), accepts four parameters.

Here is its function prototype as of PHP 5.4:

Go

OCT NOV APR

04

2014 2015

2016

107 captures

👤 ⍰❎
f 🐦

14 Mar 2012 - 10 Apr 2016 ▾ About this capture

A Hitchhiker’s Guide to Cross-Site Scripting (XSS... https://web.archive.org/web/20151104064503/htt...

4 van 25 21-09-18 11:43

string htmlspecialchars (string $string [, int $flags =
ENT_COMPAT | ENT_HTML401 [, string $encoding = 'UTF-8' [,
bool $double_encode = true]]])

The first parameter accepts a string whose special HTML

characters will be converted to HTML entities. The second

accepts one or more flags which defaults to using

ENT_COMPAT (does not convert single quotes to entities)

but should be set to use ENT_QUOTES (does convert single

quotes to entities). You can include another flag, in PHP 5.4,

called ENT_SUBSTITUTE which is not a bad idea for UTF-8,

i.e. ENT_QUOTES | ENT_SUBSTITUTE. You can pretend

that all the other constants don’t exist. The third parameter

accepts a string indicating the character encoding of the

string being processed and defaults to ISO-8859-1 for PHP

5.3, and UTF-8 for PHP 5.4. Don’t ever set the fourth

parameter to FALSE when escaping unless your filtering

logic was written by an Über Dolphin – always keep filtering

and escaping separate from each other to avoid confusing

the two and then having to pointlessly argue why your way is

better in defiance of all logic.

The function, if correctly configured using this super simple

article for guidance, will now convert the following characters

to entities: <, >, ‘, ” and &. These characters make sense to

escape since they are used to construct HTML tags,

delineate attribute values or reference HTML entities – none

of which we want users to be able to do!

If you want some very good advice before your brain

implodes from too much reading, a good way to potentially

make yourself vulnerable to XSS is to not explicitly set the

first two optional parameters ($flags and $encoding) to an

appropriate value. In fact, if you see htmlspecialchars()

missing any of those two parameters in someone’s source

code, you should request that they fix it or, at the very least,

curse their name and pray for the Supreme Spaghetti

Monster to label them as biohazardous waste in need of

Go

OCT NOV APR

04

2014 2015

2016

107 captures

👤 ⍰❎
f 🐦

14 Mar 2012 - 10 Apr 2016 ▾ About this capture

A Hitchhiker’s Guide to Cross-Site Scripting (XSS... https://web.archive.org/web/20151104064503/htt...

5 van 25 21-09-18 11:43

emergency disposal.

Now, let’s get down to overloading your brain with

information. I’m told that this part is like being sucked into the

Total Perspective Vortex machine on Frogstar World B.

To Quote Or Not To

Quote. How Is That A

Question?

As it turns out, HTML is not simply a popular markup

language, it is a popular markup language designed by a

bureaucratic species of transdimensional beings seeking to

drive Humanity insane by inventing the most impossible-to-

secure markup language known in 172 Universes which is

then interpreted by “browsers” written by Mice to test the

patience of security professionals and keep the really

intelligent Humans distracted from the truth of their soon-to-

end existence as they search out ever more ludicrous

examples of parsing weirdness. Excuse me, I held my breath

writing that and need to fetch my Oxygen tank…

Consider the following example. If you want to see whether

they work without copy pasting, you can clone all examples

from my ominously titled xss repository on Github into a

webroot somewhere to read or execute them.

Single Quoted Attributes

<?php header('Content-Type: text/html;
charset=UTF-8'); ?>

1.

<!DOCTYPE html>2.
<?php3.
$input = <<<INPUT4.
' onmouseover='alert(/Meow!/);5.
INPUT;6.
/**7.
 * NOTE: This is equivalent to using
htmlspecialchars($input, ENT_COMPAT)

8.

Go

OCT NOV APR

04

2014 2015

2016

107 captures

👤 ⍰❎
f 🐦

14 Mar 2012 - 10 Apr 2016 ▾ About this capture

A Hitchhiker’s Guide to Cross-Site Scripting (XSS... https://web.archive.org/web/20151104064503/htt...

6 van 25 21-09-18 11:43

 */9.
$output = htmlspecialchars($input);10.
?>11.
<html>12.
<head>13.
 <title>Single Quoted Attribute</title>14.
 <meta http-equiv="Content-Type"
content="text/html; charset=UTF-8">

15.

</head>16.
<body>17.
 <div>18.
 <span title='<?php echo $output
?>'>

19.

 What's that latin placeholder
text again?

20.

 21.
 </div>22.
</body>23.
</html>24.

If you run the example from a browser and pass your mouse

pointer over the text, you will get a popup saying “/Meow!/”.

Granted, this is hardly the most impressive XSS ever but

remember that the Javascript executed could be a lot more

ingenious and damaging. The reason you see alert() used

everywhere in XSS examples is to prove that Javascript was

executable – a real attacker will hardly advertise his success

like this.

In this case, the htmlspecialchars() function call omits the

second parameter which defaults to using the ENT_COMPAT

flag. With this setting, the function does not convert single

quotes to entities, allowing us to inject an unescaped single

quote (to close the title attribute value) and another to start a

new attribute and value which will be closed by the final

single quote used in the template.

We can fix this problem in one of two ways:

1. Use double quotes which will prevent user input from

Go

OCT NOV APR

04

2014 2015

2016

107 captures

👤 ⍰❎
f 🐦

14 Mar 2012 - 10 Apr 2016 ▾ About this capture

A Hitchhiker’s Guide to Cross-Site Scripting (XSS... https://web.archive.org/web/20151104064503/htt...

7 van 25 21-09-18 11:43

breaking out of the HTML attribute value context using single

quotes; or

2. Set the second parameter to htmlspecialchars() to use the

ENT_QUOTES flag which will escape any single quotes a

user tries to inject.

The moral of the story can be made even clearer by another

example. In this case we use another perfectly validating

means of delineating attribute values in HTML5 – we just

don’t bother using quotes at all!

Quoteless Attributes

<?php header('Content-Type: text/html;
charset=UTF-8'); ?>

1.

<!DOCTYPE html>2.
<?php3.
$input = <<<INPUT4.
faketitle onmouseover=alert(/Meow!/);5.
INPUT;6.
$output = htmlspecialchars($input,
ENT_QUOTES);

7.

?>8.
<html>9.
<head>10.
 <title>Quoteless Attribute</title>11.
 <meta http-equiv="Content-Type"
content="text/html; charset=UTF-8">

12.

</head>13.
<body>14.
 <div>15.
 <span title=<?php echo $output ?>>16.
 What's that latin placeholder
text again?

17.

 18.
 </div>19.
</body>20.

Go

OCT NOV APR

04

2014 2015

2016

107 captures

👤 ⍰❎
f 🐦

14 Mar 2012 - 10 Apr 2016 ▾ About this capture

A Hitchhiker’s Guide to Cross-Site Scripting (XSS... https://web.archive.org/web/20151104064503/htt...

8 van 25 21-09-18 11:43

</html>21.

Without quotes delineating the attribute value, any space

character (including any character a browser might interpret

as a space – there are a lot!) allows the user to inject new

attributes and values. As from the above, converting all

quotes to entities is pointless if there are no quotes to start

with! Our escaping doesn’t convert spaces or other space-

interpreted characters into entities at all.

By now, you should see the obvious. All HTML attribute

values MUST be quoted, and preferably DOUBLE quoted, in

any scenario where you suspect untrusted input will be

injected into an attribute value, or where htmlspecialchars()

calls do not set the second parameter to use ENT_QUOTES.

Believe it or not, using single quotes or no quotes remains

popular and is perfectly valid under the new HTML5 spec.

Some people even celebrate this new insanity. Keep an eye

on any designers who look a bit wild eyed or spend too much

time smiling while staring into empty space.

Excuse Me, Sir, But

Someone Ate My Quotes

One of the great mysteries in escaping output is a common

myth known as the Great ASCII Delusion (GAD). Those

under the influence of this delusion, besides hearing voices in

their head, have arrived at a belief that many character

encodings are equivalent for the purposes of escaping those

characters which have a special meaning for HTML, e.g

ISO-8859-1 and UTF-8. Alas, this is untrue because the Mice

created something called Internet Explorer 6 – a thoroughly

shameful (but still commonly used) browser which

corporations across the Planet continue to insist on using

because buying new computers and upgrading operating

systems just to use some fancy new Microsoft Office version

is seen as a waste of shareholder funds.

Internet Explorer 6 is the bad boy of the XSS world since it’s

Go

OCT NOV APR

04

2014 2015

2016

107 captures

👤 ⍰❎
f 🐦

14 Mar 2012 - 10 Apr 2016 ▾ About this capture

A Hitchhiker’s Guide to Cross-Site Scripting (XSS... https://web.archive.org/web/20151104064503/htt...

9 van 25 21-09-18 11:43

vulnerable to ridiculous exploits no decent modern browser

would dare associate with. Even Netscape would probably

spit on it from beyond the grave. For example, have a go with

this example using IE6 and PHP 5.3. If you need a testing

version of all IE browsers since IE 5.5, you can download

IETester from http://www.my-debugbar.com/ietester

/index_all.php and use it from Windows. Try hard, I know

Windows is bad and the new Tablet makeover for Windows 8

makes you feel ill, but it’s important to see these examples in

action.

Source code

<?php header('Content-Type: text/html;
charset=UTF-8'); ?>

1.

<!DOCTYPE html>2.
<?php3.
/**4.
 * You could also subsititute \xC0 or any
other impacted character

5.

 * above ASCII number 1926.
 */7.
$input1 = 'fakeimage'.chr(192);8.
$input2 = <<<INPUT29.
onerror=alert(/Meow!/)//10.
INPUT2;11.
$output1 = htmlspecialchars($input1,
ENT_QUOTES);

12.

$output2 = htmlspecialchars($input2,
ENT_QUOTES);

13.

?>14.
<html>15.
<head>16.
 <title>Swallowed Quotes</title>17.
 <meta http-equiv="Content-Type"
content="text/html; charset=UTF-8">

18.

</head>19.

Go

OCT NOV APR

04

2014 2015

2016

107 captures

👤 ⍰❎
f 🐦

14 Mar 2012 - 10 Apr 2016 ▾ About this capture

A Hitchhiker’s Guide to Cross-Site Scripting (XSS... https://web.archive.org/web/20151104064503/htt...

10 van 25 21-09-18 11:43

<body>20.
 <div>21.
 <img src="http://example.com
/images/<?php echo $output1 ?>"

22.

 title="<?php echo $output2 ?>">23.
 </div>24.
</body>25.
</html>26.

With the above example, something very weird happens.

Using ASCII character number 192 just before a double

quote in a document being interpreted as UTF-8 results in the

double quote…vanishing in IE6. Seriously, it’s there but not

there. Obviously the Mice are behind it – no Human could

possibly defy Physics like this!

This allows an attacker to once again break out of the HTML

attribute they can inject values into. Using a coincidental

opportunity to inject a second free text string nearby which a

browser will concatenate to the broken out attribute value of

the first, you get an effective XSS combo attack.

This IE6 quirk even bypasses the call to htmlspecialchars()

which, as explained above, defaults to the ISO-8859-1

character encoding for PHP 5.3 or less. If the Great ASCII

Delusion were not a fabrication of someone’s imaginative

wishful thinking, this should not be possible. Not to be too

harsh though, this weirdness is due primarily to a bug in IE6’s

treatment of the various character encodings where you can

trick the browser into thinking something like \xC0 (in hex) is

the start of a multi-byte character thus swallowing the next

ASCII character (the double quote).

To fix the above weirdness, you must make sure that

escaping is done using the same character encoding that the

document is being served as. The above HTML document is

identifying itself as being UTF-8 but the default

htmlspecialchars() encoding is ISO-8859-1 in PHP 5.3 –

there’s obviously something not agreeing there! This brings

Go

OCT NOV APR

04

2014 2015

2016

107 captures

👤 ⍰❎
f 🐦

14 Mar 2012 - 10 Apr 2016 ▾ About this capture

A Hitchhiker’s Guide to Cross-Site Scripting (XSS... https://web.archive.org/web/20151104064503/htt...

11 van 25 21-09-18 11:43

us to the absolutely perfect use (well, almost) of

htmlspecialchars(), the golden rule, the Word of The

Supreme Spaghetti Monster, the bringer of frustration to XSS

attackers:

Always set the third parameter to htmlspecialchars(), set it

correctly, and make sure your document is never served with

a mismatched or invalid character encoding! Don’t expect

some theoretically perfect world to magically appear –

browsers are filthily efficient at doing weird things you don’t

expect.

I suppose I have to mention that most versions of IE have

similar issues with other character encodings such as BIG5

and Shift-JIS. You can test your IE versions using

http://ha.ckers.org/weird/variable-width-encoding.cgi to see

what characters can be used across different character

encodings. Believe it or not, these character encodings are

actually still being used and, for some strange reason, people

from China and Japan do use PHP.

If you want to be completely paranoid, you can either check

the input for invalid UTF-8 (Drupal and HTMLPurifier have

reusable functions/classes for this), and/or run it through a

conversion function which should theoretically filter out the

naughty bits:

$input = mb_convert_encoding($input, 'UTF-8', 'UTF-8');

This is probably a good idea for older PHP versions pre 2010

or earlier but recent PHP versions have specifically improved

htmlspecialchars() to disallow invalid characters such as the

above (if you set the right character encoding!). You should

be aware, though, that htmlspecialchars() may still return

blank strings on certain malformed input and, since PHP 5.4,

will not issue any warnings about this.

I Broke It! I Broke It!

Go

OCT NOV APR

04

2014 2015

2016

107 captures

👤 ⍰❎
f 🐦

14 Mar 2012 - 10 Apr 2016 ▾ About this capture

A Hitchhiker’s Guide to Cross-Site Scripting (XSS... https://web.archive.org/web/20151104064503/htt...

12 van 25 21-09-18 11:43

Before you think htmlspecialchars() is getting off lightly, there

is one minor quibble. We’ll keep picking on Internet Explorer

6 for the rest of this article since it’s so easy to exploit.

Source code

<?php header('Content-Type: text/html;
charset=UTF-8'); ?>

1.

<!DOCTYPE html>2.
<?php3.
$input1 = 'fakeimage'."\xC0";4.
$input2 = <<<INPUT25.
onerror=alert(/Meow!/)//6.
INPUT2;7.
/**8.
 * If you think PHP 5.4 will save you -
empty strings make it guess the encoding

9.

 * or use the default_charset value from
php.ini. You sure everyone on the whole

10.

 * planet uses UTF-8? Under 5.3 - empty
strings === default encoding.

11.

 */12.
$encoding = ''; // from outside source or
unvalidated variable

13.

$output1 = htmlspecialchars($input1,
ENT_QUOTES, $encoding);

14.

$output2 = htmlspecialchars($input2,
ENT_QUOTES, $encoding);

15.

?>16.
<html>17.
<head>18.
 <title>Swallowed Quotes</title>19.
 <meta http-equiv="Content-Type"
content="text/html; charset=UTF-8">

20.

</head>21.
<body>22.
 <div>23.
 <img src="http://example.com24.

Go

OCT NOV APR

04

2014 2015

2016

107 captures

👤 ⍰❎
f 🐦

14 Mar 2012 - 10 Apr 2016 ▾ About this capture

A Hitchhiker’s Guide to Cross-Site Scripting (XSS... https://web.archive.org/web/20151104064503/htt...

13 van 25 21-09-18 11:43

/images/<?php echo $output1 ?>"
 title="<?php echo $output2 ?>">25.
 </div>26.
</body>27.
</html>28.

Setting the third $encoding parameter of htmlspecialchars()

to an empty string in PHP 5.4 will set the encoding to be

auto-detected, grabbed from the php.ini value of

default_charset, or guessed from the current locale (in that

order). Be very careful under PHP 5.4 NEVER to let this

happen. Don’t leave your escaping parameters to chance.

Use empty() or strlen(), for example, to spot this issue if

accepting encodings from another source or variable that

might allow for empty strings. Again, this behaviour is very

secure and there’s nothing wrong with it whatsoever. Oh,

who am I kidding… This is the dumbest parameter behaviour

ever invented. NULL means use the default encoding; blank

string means play a guessing game. Even Vogon poetry

pales in comparison to such nonsense. One slip and an

empty parameter string can rip apart this house of cards

because who knows which character encoding will be used.

Oooh, I wonder what this does under PHP 5.3… Yes, er,

don’t allow blank encoding parameter strings under PHP 5.3

either. Setting an empty string in PHP 5.3 is interpreted as

setting the default character encoding, i.e. ISO-8859-1,

instead of triggering the expected warning about an

unsupported encoding.

So, be careful kids. When setting the encoding for

htmlspecialchars() do a safety check to make sure it’s not an

empty string you are passing in. Keep it predictable and

consistent.

There’s also one other curious behaviour when using

htmlspecialchars().

Go

OCT NOV APR

04

2014 2015

2016

107 captures

👤 ⍰❎
f 🐦

14 Mar 2012 - 10 Apr 2016 ▾ About this capture

A Hitchhiker’s Guide to Cross-Site Scripting (XSS... https://web.archive.org/web/20151104064503/htt...

14 van 25 21-09-18 11:43

Source code

<?php header('Content-Type: text/html;
charset=UTF-8'); ?>

1.

<!DOCTYPE html>2.
<?php3.
error_reporting(E_ALL);4.
ini_set('display_errors', 1);5.
$input1 = 'fakeimage'."\xC0";6.
$input2 = <<<INPUT27.
onerror=alert(/Meow!/)//8.
INPUT2;9.
/**10.
 * Invalid encoding makes
htmlspecialchars() throw a warning but it
continues

11.

 * the current operation anyway using the
default encoding even if the default

12.

 * is an unsafe choice for the
application. Don't allow invalid
encodings!

13.

 */14.
$encoding = 'invalid-encoding'; // from
outside source or unvalidated variable

15.

$output1 = htmlspecialchars($input1,
ENT_QUOTES, $encoding);

16.

$output2 = htmlspecialchars($input2,
ENT_QUOTES, $encoding);

17.

?>18.
<html>19.
<head>20.
 <title>Swallowed Quotes</title>21.
 <meta http-equiv="Content-Type"
content="text/html; charset=UTF-8">

22.

</head>23.
<body>24.
 <div>25.
 <img src="http://example.com
/images/<?php echo $output1 ?>"

26.

Go

OCT NOV APR

04

2014 2015

2016

107 captures

👤 ⍰❎
f 🐦

14 Mar 2012 - 10 Apr 2016 ▾ About this capture

A Hitchhiker’s Guide to Cross-Site Scripting (XSS... https://web.archive.org/web/20151104064503/htt...

15 van 25 21-09-18 11:43

 title="<?php echo $output2 ?>">27.
 </div>28.
</body>29.
</html>30.

When you set an invalid character encoding, not the empty

string of doom, htmlspecialchars() will issue a Warning level

error…and continue merrily on its way by reinstating the

default encoding. In a production scenario, you will likely

have display_errors disabled and this warning will be logged

and possibly ignored by some users. If this makes it through,

setting an invalid character encoding whether by a deliberate

user value or simple programmer error may create an

exploitable scenario.

So, make sure you also validate the character encoding.

Don’t just leave it up to htmlspecialchars() since it allows the

continued execution of the application. Arguably this should

be a fatal error since a bad encoding is itself a security

problem.

Seriously, this function is like handing a box of matches to a

Human and telling them there’s a rainforest nearby that’s

essential to all life on Earth…

Internet Explorer: Master

Of Supporting Stupid

Character Encodings

Internet Explorer is unique in the Universe. Designed by Mice

to be the dumbest, most frustrating, most stubbornly non-

upgradeable piece of crap ever, it does things that make XSS

far easier. The terrible part is that IE is popular with

corporations and businesses using commodity hardware

imported from whichever country currently has the lowest

paid PC assemblers on Earth. One would think they’d like a

more secure browser to protect their money making

endeavours.

It’s no wonder that Dolphins had to think long and hard

Go

OCT NOV APR

04

2014 2015

2016

107 captures

👤 ⍰❎
f 🐦

14 Mar 2012 - 10 Apr 2016 ▾ About this capture

A Hitchhiker’s Guide to Cross-Site Scripting (XSS... https://web.archive.org/web/20151104064503/htt...

16 van 25 21-09-18 11:43

before deciding we were marginally smarter than the average

cat. Cats, coincidentally, strenuously deny this claim having

spent thousands of years demonstrating a lack of Human

intelligence by showing how easy it is to make Humans cater

to their every need…for free. Even their main rivals, Dogs,

are expected to do useful work like herding sheep, chasing

cars, digging holes, barking at strangers, and keeping bill

bearing postal workers at bay.

All versions of Internet Explorer support a troublesome

character encoding called UTF-7 which, oddly enough, is not

supported by htmlspecialchars(). You can probably see

where this is going. How do you escape a character encoding

that your escaper doesn’t even support? Easy, you can’t.

JUST DON’T USE UTF-7! EVER! UTF-7 has the distinction

of definitely not being ASCII compatible – it encodes angle

brackets (used to open and close HTML tags) very differently

so they are never detected by filters or escapers relying on

other character encodings.

Unfortunately, some applications do allow users to cherry

pick an encoding. It’s not uncommon in international websites

(e.g. Google which had this problem). Here’s an example of

what not to do:

Source code

<?php1.
$input1 = 'UTF-7';2.
$input2 = <<<INPUT23.
<script>alert(/Meow!/)//</script>4.
INPUT2;5.
$input2 = mb_convert_encoding($input2,
'UTF-7', 'UTF-8');

6.

$output1 = htmlspecialchars($input1,
ENT_QUOTES, 'UTF-8');

7.

$output2 = htmlspecialchars($input2,8.

Go

OCT NOV APR

04

2014 2015

2016

107 captures

👤 ⍰❎
f 🐦

14 Mar 2012 - 10 Apr 2016 ▾ About this capture

A Hitchhiker’s Guide to Cross-Site Scripting (XSS... https://web.archive.org/web/20151104064503/htt...

17 van 25 21-09-18 11:43

ENT_QUOTES 'UTF-8');
9.

header('Content-Type: text/html;
charset='.trim($output1));

10.

?>11.
<!DOCTYPE html>12.
<html>13.
<head>14.
 <title>Mismatched Encoding</title>15.
 <meta http-equiv="Content-Type"16.
 content="text/html; charset=<?php echo
$output1 ?>">

17.

</head>18.
<body>19.
 <div>20.

<?php echo $output2 ?>21.
 </div>22.
</body>23.
</html>24.

This works in all IE versions. The problem here is that we’re

letting the user set the character encoding without validating

it against a safe whitelist of encodings that we can actually

escape. This also works even when you plead with the

Supreme Spaghetti Monster and try passing UTF-7 to

htmlspecialchars() since the function simply issues a warning

and reinstates its ISO-8859-1 or UTF-8 default before

continuing on its merry way to making you vulnerable to XSS.

Yes, very secure behaviour there…

Note: putting the @ symbol in front of htmlspecialchars() to

hide these warning errors during development is not

considered an act worthy of an intelligent species. Don’t let

the cats win!

Now, you might think that this would be the end of it, but

there’s one other problem afflicting older browsers (fixed as

of Internet Explorer 9). In certain scenarios you can trick the

browser into rendering pages as UTF-7 even when you can’t

set the page’s character encoding. This is due to a bug in

Go

OCT NOV APR

04

2014 2015

2016

107 captures

👤 ⍰❎
f 🐦

14 Mar 2012 - 10 Apr 2016 ▾ About this capture

A Hitchhiker’s Guide to Cross-Site Scripting (XSS... https://web.archive.org/web/20151104064503/htt...

18 van 25 21-09-18 11:43

how some browser versions guess the character encoding

when it’s absent (i.e. not set in a header or meta tag, or set

incorrectly, e.g. UTF-8 is valid; UTF8 is NOT).

To pull off this exploit, you need to first set some UTF-7 text

which is persisted across requests, e.g. a blog comment.

Since we can’t escape UTF-7 in PHP, the persisted text will

contain some UTF-7 encoded XSS code. Just in case, you’re

smart and you’re thinking that mbstring functions might help

detect UTF-7 – they won’t. mbstring will detect UTF-7 as

UTF-8, and UTF-8 as UTF-7 depending on the detection

order set in mb_detect_encoding(). After that it’s a long

winded story of using iframes to trick a browser into rendering

the innocent looking UTF-7 strings on your webpages as

UTF-7.

Where escaping fails, some common sense should win out.

Just make sure all the responses you serve have a header

that sets the appropriate character encoding for the content

(use a valid encoding string, not an invalid string form). In

HTML, use the relevant meta tag to indicate the content’s

character encoding as a backup should the header be

somehow omitted.

Conclusion

Htmlspecialchars() as a function for escaping output has its

limitations. If you’re unaware of these and wish to persist in

using it incorrectly, you should expect to be burned. No,

seriously, there really is an incinerator for those labelled as

biohazardous waste over in Alpha Centauri.

I get the feeling I’ve written enough for you today. I’m very

sorry for the 0.006% of you that Vogon studies indicate are

now sitting at their desk drooling all over their keyboards from

encroaching insanity. If you’re worried about joining the

0.006%, please submit the correct form in triplicate,

completed in capitals using a blue ball-point pen, to your local

Go

OCT NOV APR

04

2014 2015

2016

107 captures

👤 ⍰❎
f 🐦

14 Mar 2012 - 10 Apr 2016 ▾ About this capture

A Hitchhiker’s Guide to Cross-Site Scripting (XSS... https://web.archive.org/web/20151104064503/htt...

19 van 25 21-09-18 11:43

Alpha Centauri Medical Facility where the friendly Vogon staff

will give you a free brain scan and determine whether the

incinerator next door needs more fuel.

So, what next? In Part 2, we continue our voyage into

madness with more examples using htmlspecialchars()

though in another direction this time. In the meantime, you

have a lot of examples (aka ammunition) and there are a lot

of applications/frameworks/libraries (targets). I figure the rest

is obvious.

See you for Part 2!

Share this:

Character encodings in HTML

Character encodings in HTML

Cross-Site Scripting

Cross-Site Scripting

php

php

xss

xss

This entry was posted by padraic on March

12, 2012 at 8:49 pm, and is filed under PHP

General, PHP Security, Zend Framework.

Follow any responses to this post through

RSS 2.0.You can leave a response or

trackback from your own site.


29
    More

Roberto Luengo

Nice article… interesting despite all the crap about dolphins, mice, etc.

http://blog.astrumfutura.com Pádraic Brady

All the crap is in reference to Douglas Adam’s excellent Hitchhiker’s

Guide To The Galaxy ;).

Panajotis Zamos

nice crap 😀

Muzammil Hussain

 http://www.allmood.com/classifieds/

http://twitter.com/g0b0ss Michał Wyrwalski

A very valuable article. And the “crap about dolphins, mice, etc.” makes

it an easier read IMO

Go

OCT NOV APR

04

2014 2015

2016

107 captures

👤 ⍰❎
f 🐦

14 Mar 2012 - 10 Apr 2016 ▾ About this capture

A Hitchhiker’s Guide to Cross-Site Scripting (XSS... https://web.archive.org/web/20151104064503/htt...

20 van 25 21-09-18 11:43

Anonymous

i’m absolutely agree! this article is very informative and topical!

http://young-jeezy-albums.net/

http://twitter.com/andremaha Andrey Esaulov

Wow, this is golden mine for the security know-how! Thanks for putting

it out there! Most of the things I know, but what struck me is the

character encoding problem in IE. Didn’t know that!

Muzammil Hussain

 http://www.allmood.com/classifieds/

http://www.facebook.com/people/Robert-Baldessari/1788856485 Robert

Baldessari

This would be a nice article for anyone who has the time to filter through

all the crap. I got to about paragraph 6.

Muzammil Hussain

wwwallmood.com

Muzammil Hussain

best free classifieds http://www.allmood.com/classifieds/

http://www.facebook.com/hopeseekr Theodore R. Smith

I want to salute your awesome article! Already the plebs in reddit’s

/r/php are bemoaning your article, even going so far as to say “TL;DR”.

Your article is one of the best I’ve read in years, but you need to state

how using htmlentities() to encode *all* UTF-8 characters can be very

advantageous, as several UTF-7 and -8 chars are interpreted as both

quotes and/or dashes by various browsers (particularly troubling: all IEs

up to and including IE 9), even if you do all your coding right w/

htmlspecialchars().

Please see my discussion of this on my StackOverflow

answer: http://stackoverflow.com/a/3623297/430062

http://www.survivethedeepend.com Pádraic Brady

 Good point, htmlentities() has the exact same weakness and it also

doesn’t support UTF-7. As for the reddit plebes, they can go bite me

;). The TL;DR for this has been circulating for years and is still

regularly ignored.

Artur Bodera

I just finished praying to the Supreme Spaghetti Monster

for that to never happen

I welcome everyone to send their “TL;DR” to complaints

box downstairs. Follow the white rabbit and watch your

Go

OCT NOV APR

04

2014 2015

2016

107 captures

👤 ⍰❎
f 🐦

14 Mar 2012 - 10 Apr 2016 ▾ About this capture

A Hitchhiker’s Guide to Cross-Site Scripting (XSS... https://web.archive.org/web/20151104064503/htt...

21 van 25 21-09-18 11:43

head…

http://www.facebook.com/caaguado Carlos Aguado Asensio

I’m really sorry to say this Pádriac, but even enjoying so much and with

so much fun your posts, I believe everyone would probably benefit more

from this insightful info if you would make it more executive and to the

point. Anyway, thanks really a lot!!!

http://www.coreyballou.com/ Corey Ballou

I think one of the key missing pieces of information here is how to

properly handle invalid multi-byte characters. You describe them

triggering an E_WARNING exception, but don’t provide users with an

appropriate solution that should be used to mitigate these problems and

more advanced attack vectors, i.e.:

try {

$string = mb_convert_encoding($string, ‘UTF-8′,

mb_detect_encoding($string));

return htmlentities($string, ENT_QUOTES, ‘UTF-8′, false);

} catch (Exception $e) {

return ”;

}

Anonymous

WinWinHost.com specializes in Information Technology, affordable Web

Hosting,

Web Development, Internet Marketing, Software Engineering and

outsourcing. We

can help you launch a product, or service, whether its a software

package for a

mobile device, or an eCommerce website to sell your inventory, or even

a simple

 blog to help market your business.

http://www.winwinhost.com/

Artur Bodera

Best.. article… evar! As always from Paddy.

Thank you!

http://www.annzoseo.com christinaxio

Thanks for sharing this it will help me a lot….

amir freed

Well the discussion is very interesting, Actually i am looking for this

discussion you explain it very well,I can say that you have a quality to

Go

OCT NOV APR

04

2014 2015

2016

107 captures

👤 ⍰❎
f 🐦

14 Mar 2012 - 10 Apr 2016 ▾ About this capture

A Hitchhiker’s Guide to Cross-Site Scripting (XSS... https://web.archive.org/web/20151104064503/htt...

22 van 25 21-09-18 11:43

explain every thing with great confidence and knowledge thanks. my

blog is http://downloadgooglechromeall.blogspot.com

http://htsoft.vn/ phan mem quan ly ban hang

Great artical. THanks

Ulf Härnhammar

Let’s give up on the web and go back to character-based curses

interfaces instead.

// Ulf (kses guy)

http://www.plumbersdepot.co.uk/brand/grohe/30/ Grohe

 It is very nice information to guide for programming.

syed nouman

http://indopakfashion.com/

syed nouman

http://indopakfashion.com/

syed nouman

Haemophilia Inherited disorder impacting blood clog formation

The human body is a too complicated program. Many people have

dedicated their life to the research of the human body & the

numerous conditions impacting the human body. The latest years have

observed great of research on the all-essential genes & how they

impact the offspring. Professionalsrevealed a excellent attention in

examining about historic methods & how a situation passes on from the

family to the young. Genes perform a too crucial role in the exchange

of features by the offspring.

http://ahealthyclub.com/2012/03/29/haemophilia-inherited-disorder-

impacting-blood-clog-formation/

Lafayette Internal

Let’s give up on the web and go back to character-based curses

interfaces instead.

Anonymous

Thank you very much for this post. I am getting a grip on how to use

these codes. Thanks http://www.g-covers.com/

http://kangjem.blogspot.com/ kangjem

Wow, this is golden mine for the security know-how! Thanks for putting

it out there! Most of the things I know, but what struck me is the

character encoding problem in IE. Didn’t know that!

http://kangjem.blogspot.com/ kangjem

Wow, this is golden mine for the security know-how! Thanks for putting

Go

OCT NOV APR

04

2014 2015

2016

107 captures

👤 ⍰❎
f 🐦

14 Mar 2012 - 10 Apr 2016 ▾ About this capture

A Hitchhiker’s Guide to Cross-Site Scripting (XSS... https://web.archive.org/web/20151104064503/htt...

23 van 25 21-09-18 11:43

Pingback: Automatic Output Escaping In PHP And The Real Future Of

Preventing Cross-Site Scripting (XSS) | Pádraic Brady()

Pingback: CORY()

Pingback: 7 & 10 Inch Tablet Pc()

Pingback: scott()

Pingback: Mike()

Pingback: william()

Pingback: Earl()

Pingback: Lawrence()

Pingback: lawyer jargon()

Pingback: Timothy()

it out there! Most of the things I know, but what struck me is the

character encoding problem in IE. Didn’t know that!

yoursocial fans

YourSocialFans.com can help you attract thousands of followers that

you can keep informed about any of your product or service offerings

instantly. By bringing you a targeted crowd of buyers all you need to do

is give them an offer they can’t refuse! Branding is also another

successful tool Twitter can provide for your business. As more and more

people become followers of your page it builds trust in them and they

are more likely to buy from you than your competitor, because they

have been following the brand and it’s a brand they trust.

yoursocial fans

YourSocialFans.com can help you attract thousands of followers that

you can keep informed about any of your product or service offerings

instantly. By bringing you a targeted crowd of buyers all you need to do

is give them an offer they can’t refuse! Branding is also another

successful tool Twitter can provide for your business. As more and more

people become followers of your page it builds trust in them and they

are more likely to buy from you than your competitor, because they

have been following the brand and it’s a brand they trust.

http://ipad3keyboard.com/ ipad 3 keyboard

I can not be more agree that IE is just b*****t . Good to see like-minded

people.

http://cnacertificationtrainingcourses.com/ cna training

hey I am like your article really it is very intrusting .

 thanks

Go

OCT NOV APR

04

2014 2015

2016

107 captures

👤 ⍰❎
f 🐦

14 Mar 2012 - 10 Apr 2016 ▾ About this capture

A Hitchhiker’s Guide to Cross-Site Scripting (XSS... https://web.archive.org/web/20151104064503/htt...

24 van 25 21-09-18 11:43

Powered by WordPress and Mystique theme by digitalnature | RSS Feeds

This work by Pádraic Brady is licensed under a Creative Commons Attribution-NonCommercial-

NoDerivs 3.0 Unported.

Pingback: Lawrence()

Pingback: Clarence()

Pingback: Tommy()

Pingback: Carlos()

Pingback: Carlos()

Pingback: Armando()

Pingback: dale()

Pingback: Julian()

Go

OCT NOV APR

04

2014 2015

2016

107 captures

👤 ⍰❎
f 🐦

14 Mar 2012 - 10 Apr 2016 ▾ About this capture

A Hitchhiker’s Guide to Cross-Site Scripting (XSS... https://web.archive.org/web/20151104064503/htt...

25 van 25 21-09-18 11:43

